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Fig. 1. Examples of our method handling demanding fluid simulation scenarios. In three dimensions, a two-sink setup draining a tank of water (left),
and generated waves hitting multiple solid objects (center). Our method achieves state-of-the-art performance amongst purely particle-based methods for
simulating dynamic vortical structures, such as two-dimensional leapfrogging (right).

This paper introduces a novel Lagrangian fluid solver based on covector

flow maps. We aim to address the challenges of establishing a robust flow-

map solver for incompressible fluids under complex boundary conditions.

Our key idea is to use particle trajectories to establish precise flow maps

and tailor path integrals of physical quantities along these trajectories to

reformulate the Poisson problem during the projection step. We devise a

decoupling mechanism based on path-integral identities from flow-map

theory. This mechanism integrates long-range flow maps for the main fluid

body into a short-range projection framework, ensuring a robust treatment

of free boundaries. We show that our method can effectively transform

a long-range projection problem with integral boundaries into a Poisson

problem with standard boundary conditions — specifically, zero Dirichlet on

the free surface and zero Neumann on solid boundaries. This transformation

significantly enhances robustness and accuracy, extending the applicability

of flow-map methods to complex free-surface problems.
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1 INTRODUCTION
Flow map methods have garnered increasing interest in both com-

putational physics and computer graphics communities in recent

years, as evidenced by the emergence of covector/impulse-based

[Deng et al. 2023; Nabizadeh et al. 2022] and vorticity-based [Mercier

et al. 2020; Yin et al. 2021, 2023] solvers that are known for their

exceptional preservation of vortical structures. The key to devel-

oping a flow-map method is constructing an efficient and accurate

representation that maps any given point from the initial to the

current frame (and vice versa if a bi-directional mapping process is

necessary). This flow map, or the relationship between the two end-

points of every mapping trajectory sample, was previously realized

by advecting the spatial coordinates [Deng et al. 2023; Hachisuka

2005; Sato et al. 2018, 2017; Tessendorf 2015], with improved accu-

racy later achieved by tracing particles backward over a recorded

spatiotemporal velocity field, both of which were implemented in a

fixed, Eulerian domain.

One of the main challenges in the impulse/covector fluid mod-

els with their flow-map-based implementations is addressing free-

surface boundaries. Existing approaches struggle to simulate free-

surface fluids due to inherent difficulties with free-surface boundary

conditions that are impractical to manage using traditional numeri-

cal solvers. In standard free-surface solvers built on velocity space,
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fluid incompressibility is enforced by solving a Poisson problemwith

zero Dirichlet boundary conditions on the free surface (assuming

zero air pressure) and appropriate Neumann boundary conditions on

solid boundaries. In contrast, the free-surface boundary conditions

for a covector flow map model pose greater challenges. This diffi-

culty arises from the complexity of calculating the kinetic energy

integral on the free boundary over the entire flow map interval.

In typical liquid simulation scenarios in computer graphics, the

fluid surface undergoes extensive geometric and topological transi-

tions over time. Consequently, a fluid particle may appear on the

surface at a certain instant and then merge into the fluid body later.

This dynamics makes it impractical to track these particles’ statuses

consistently and determine whether they are on the free surface

at any given time over a high-dimensional spatiotemporal space.

However, the accuracy of the boundary condition depends on the

path integral of all particles currently on the free surface over the
entire flow-map period. Due to these challenges with traditional

numerical solutions, the covector/impulse frameworks and their

flow-map implementation are confined to solving fluid without a

free surface and can produce smoke animations only.

This paper makes the first step toward addressing the free-surface

boundary challenges for covector flow-map methods. We attack the

problem from the Lagrangian perspective by treating each flow-map

sample as a Lagrangian particle trajectory. Under this Lagrangian

view, we proposed a novel mathematical framework based on the

path integral identities in flow-map theory to decouple the mapping

and projection steps in a conventional covector flow-map algorithm.

Our key idea is to leverage these mathematical identities to flexibly

control the integral intervals for different physical quantities along

each Lagrangian path, and then transform the boundary conditions

from the long-range integral (through all flow map time steps) to a

short-range integral (within a single time step), and eventually to

a standard zero Dirichlet boundary to fit into the existing Poisson

solver. By doing so, we can decouple the long-range map for velocity,

which serves as the enabling mechanism for the vortical expres-

siveness of flow-map methods, and the pressure projection step,

which is fundamental for simulating incompressible flow, without

any model degeneration or artificial numerical blending.

Our proposed Lagrangian covector solver comprises three com-

ponents: a Lagrangian model for long-range flow maps and path

integrals, a reformulated Poisson solver designed for handling com-

plex boundaries, and a Voronoi-based numerical implementation.

These components synergistically establish a particle-based frame-

work that facilitates integral-flexible flow maps for the first covector

solver capable of handling free surfaces.

We summarize our main contributions as follows:

• We proposed a novel Lagrangian flow map model character-

izing the path integral form of covector fluid.

• We proposed a novel mechanism to incorporate long-range

flowmaps into a short-range projection step and reformulated

it into a standard Poisson problem.

• We proposed the first free-surface covector fluid model based

on a Voronoi implementation.

2 RELATED WORK
Particle-based fluid simulation. [De Goes et al. 2015] introduced

power particles to simulate incompressible fluids. Their geometri-

cally inspired method offers precise pressure solving and an even

distribution of particles by describing the fluid motion as a series

of well-shaped power diagrams. [Zhai et al. 2018] accelerated the

construction of power diagrams on GPUs, adopting ghost particles

for fluid-air interactions, while [Lévy 2022] introduced a more pre-

cise technique to calculate free-surface interactions, framing it as

an optimal transport problem.

Flow-map methods. The method of characteristic mapping (MCM)

of Wiggert and Wylie [1976] was first introduced to the graphics

community by Tessendorf and Pelfrey [2011]. Due to its superiority

in dealing with numerical dissipation through long-range mapping,

some methods [Hachisuka 2005; Sato et al. 2018, 2017; Tessendorf

2015] trade off computational cost for better accuracy utilizing vir-

tual particles for tracking the mapping. Subsequently, Nabizadeh

et al. [2022] combined this with an impulse fluid model [Cortez

1996] and Qu et al. [2019] developed a bidirectional mapping to

prevent dissipation better. Deng et al. [2023] stores intermediate

velocity fields using a neural network for storage compression. We

track such mapping directly with particles. Compared to previous

flow map methods (e.g., [Sato et al. 2017]), our method relies on cal-

culating path integrals on particles directly without any backtrace

step, eliminating any extra velocity buffer.

Gauge-based fluid. The concept of the impulse variable was ini-
tially introduced in [Buttke 1992], reformulating the incompressible

Navier-Stokes Equation with a gauge variable and transformation

[Buttke 1993; Oseledets 1989; Roberts 1972]. Various gauges have

been proposed for applications like boundary treatment, numerical

stability, and turbulence simulation [Buttke 1993; Buttke and Chorin

1993; Cortez 1996; Summers 2000;Weinan and Liu 2003]. Saye [2016]

and Saye [2017] employed a different gauge for interfacial discon-

tinuity issues. In the graphics community, researchers like Feng

et al. [2022], Xiong et al. [2022], Yang et al. [2021], and Nabizadeh

et al. [2022] have explored this area, though facing challenges with

accurate advection. Flow maps, as shown in [Deng et al. 2023], are

effective for advecting such variables, and this method has been

adapted to particles in our research.

3 MATHEMATICAL FOUNDATION

Fig. 2. Forward and backward flow maps de-
fined on a particle.

Flow Maps. To
define the flowmap,

we start with an

initial domain Ω𝑠

at time 𝑠 and its

current domainΩ𝑟

at time 𝑟 , with 𝑠 <

𝑟 . A particle at

x𝑠 ∈ Ω𝑠 at time 𝑠

moves to x𝑟 ∈ Ω𝑟

at time 𝑟 by veloc-

ity u𝑡 , 𝑡 ∈ [𝑠, 𝑟 ]. The relationship between x𝑠 and x𝑟 is defined

through two flow map functions, including the forward flow map

2
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Notation Type Definition

𝑟 scalar Current time

𝑠 scalar Initial time

𝑠′ scalar One time step before the current time

Φ𝑏𝑎 vector Forward flow map from time 𝑎 to 𝑏

Ψ𝑎
𝑏

vector Backward flow map from time 𝑏 to 𝑎

F𝑏𝑎 matrix Jacobian of forward flow map Φ𝑏𝑎

T𝑎
𝑏

matrix Jacobian of backward flow map Ψ𝑎
𝑏

𝑝𝑡 scalar Pressure at time 𝑡

𝜆𝑡 scalar Lagrangian pressure calculated at time 𝑡

Λ𝑏
𝑎 scalar Integration of 𝜆 from time 𝑎 to 𝑏

u𝑀
𝑎→𝑏

vector Mapped velocity at time 𝑏 by covector flow

map from time 𝑎

u𝐴
𝑎→𝑏

vector Advected velocity at time 𝑏 by particle ve-

locity from time 𝑎

Table 1. Summary of important notations used in the paper.

x𝑟 = Φ𝑟𝑠 (x𝑠 ) and the backward flow map x𝑠 = 𝚿
𝑠
𝑟 (x𝑟 ), with Jaco-

bians F 𝑟
𝑠 =

𝜕Φ𝑟
𝑠

𝜕x𝑠 and T 𝑠
𝑟 =

𝜕Ψ𝑠
𝑟

𝜕x𝑟 . These two flow maps satisfy the

equations Φ𝑟𝑠 ◦Ψ𝑠
𝑟 = id𝑠and Ψ

𝑟
𝑠 ◦Φ𝑠𝑟 = id𝑟 , where id𝑠 and id𝑟 denote

the identity transformations in domains Ω𝑠 and Ω𝑟 respectively.

Considering the domain Ω𝑡 ∈ R𝑛 (where 𝑛 = 2, 3, . . .) at any

time 𝑡 as a linear vector space, the flow maps Φ𝑟𝑠 : Ω𝑠 → Ω𝑟 and

Ψ𝑠
𝑟 : Ω𝑟 → Ω𝑠 are mappings between these linear spaces. Given a

scalar field 𝑞𝑠 at time 𝑠 , a scalar field Ψ𝑠
𝑡
∗𝑞𝑡 on Ω𝑡 can be induced

via the map (Ψ𝑠
𝑡
∗𝑞𝑠 ) (x)

Δ
= 𝑞𝑠 (Ψ𝑠

𝑡 (x)) (∗ means induction, where a

map Ψ𝑠
𝑡
∗
between fields is induced by a map Ψ𝑠

𝑡 between domains).

This induced scalar field is called the pullback of 𝑞𝑠 by the mapping

Ψ𝑠
𝑡 (x) (the pullback by Φ𝑡𝑠 (x) is similar).

Covector Preliminaries. In the domain Ω𝑡 at any time 𝑡 , regarded

as a linear space, we can define tangent spaces 𝑇xΩ𝑡 and cotangent

spaces 𝑇 ∗x Ω𝑡 at any point x within Ω𝑡 . For Ω𝑡 ⊂ R𝑛 , the tangent
spaces 𝑇xΩ𝑡 = R

𝑛
encompass all vectors originating from x, while

the cotangent space 𝑇 ∗x Ω𝑡 comprises all linear functions (termed

cotangent vectors or covectors) defined on 𝑇xΩ𝑡 . Given an inner

product in Ω𝑡 ⊂ R𝑛 , any tangent vector vx ∈ 𝑇xΩ𝑡 induces a

covector in 𝑇 ∗x Ω𝑡 , such that v♭x (w) = ⟨v,w⟩ for all w ∈ 𝑇xΩ𝑡 . Here,

♭ denotes the conversion of a tangent vector to a covector, and ♯

signifies the reverse conversion. A vector field v(x) (or covector field
v♭ (x)) is formed by selecting one vector vx = v(x) (or one covector
v♭x = v♭ (x)) from each tangent space 𝑇xΩ𝑡 (or the cotangent space

𝑇 ∗x Ω𝑡 ) at every point x. The gradient 𝑑𝑞 of a scalar field 𝑞 can be

considered as a vector field. Refer to [Crane et al. 2013] for details.

Lie Advection. For any covector field v♭𝑠 taken fromΩ𝑠 ,Ψ
𝑠
𝑡 induces

a covector field Ψ𝑠
𝑡
∗v♭𝑠 on Ω𝑡 as (Ψ𝑠

𝑡
∗v♭𝑠 ) (x)

Δ
= [T 𝑠

𝑡
𝑇 (x)v𝑠 (Ψ𝑠

𝑡 (x))]♭,
which is referred to as the pullback of the covector field v♭𝑠 by

Ψ𝑠
𝑡 . The pullback of v♭𝑠 at any time 𝑡 satisfies an Lie advection

equation:

(
𝜕
𝜕𝑡 + Lu

)
v♭𝑡 = 0, where Lu is the Lie derivative, and

in Ω𝑟 ⊂ R𝑛 , it is given by (Luv♭𝑡 )♯ = (u · ∇)v𝑡 + (∇u)𝑇 · v𝑡 . There-
fore if there is a vector field that satisfies this advection equation, at

any time 𝑡 , v♭𝑡 can be described through the pullback of the initial

v♭𝑠 through pullback.

4 PHYSICAL MODEL
Covector Incompressible Fluid. We model incompressible flow us-

ing Euler equations by assuming viscosity zero and density one:
𝜕u
𝜕𝑡
+ (u · ∇)u + ∇𝑝 = 0,

∇ · u = 0,
(1)

with u and 𝑝 specifying the fluid velocity and pressure. The first

equation describes the momentum conservation, and the second

equation specifies incompressibility. According to the covectormodel

proposed in [Nabizadeh et al. 2022], Equation 1 can be reformulated

into its covector form as
𝜕u
𝜕𝑡 + (u · ∇)u + ∇u

𝑇 · u + ∇(𝑝 − 1

2
|u|2) = 0,

which can be further written with Lie advection as

( 𝜕
𝜕𝑡
+ Lu)u♭ + 𝑑 (𝑝 −

1

2

|u|2) := ( 𝜕
𝜕𝑡
+ Lu)u♭ + 𝑑𝜆 = 0, (2)

where 𝜆 = 𝑝 − 1

2
|u|2 is defined as Lagrangian pressure.

Covector Fluid on Flow Maps. The solution u𝑟 of Equation 2 at 𝑟

includes terms obtained by pulling back the velocity field as a covec-

tor through the flow map. This process is illustrated by integrating

both sides of Equation 2 from time 𝑠 to 𝑟 , represented as a covector:

u♭𝑟 = Ψ𝑠
𝑟
∗u♭𝑠 −

∫ 𝑟

𝑠

(Φ𝜏𝑠 ◦ Ψ𝑠
𝑟 )∗𝑑𝜆𝜏𝑑𝜏,

= Ψ𝑠
𝑟
∗u♭𝑠 − 𝑑

∫ 𝑟

𝑠

(Φ𝜏𝑠 ◦ Ψ𝑠
𝑟 )∗𝜆𝜏𝑑𝜏,

(3)

with the second line arising from the commutativity between the

differential operator ∇ (more accurately denoted as “d”) and the

pullback operator (Equation 7 in [Nabizadeh et al. 2022]), and com-

mutativity between ∇ and the integral sign.

Next, we can convert the covector forms and their pullbacks in

Equation 3 into their vector forms as:

u(x, 𝑟 ) = T 𝑠
𝑟
𝑇 u𝑠 (Ψ𝑠

𝑟 (x), 𝑠)︸               ︷︷               ︸
mapping

−∇
∫ 𝑟

𝑠

𝜆((Φ𝜏𝑠 ◦ Ψ𝑠
𝑟 ) (x), 𝜏)𝑑𝜏︸                              ︷︷                              ︸

projection

, (4)

which constitutes two main steps to obtain velocity at (x, 𝑟 ) using a
mapping-projection scheme. Initially, the mapping step calculates

T 𝑠
𝑟
𝑇 u𝑠 (Ψ𝑠

𝑟 (x), 𝑠) as the pullback of the velocity field u𝑠 by the flow

map. In the projection step, the gradient of

∫ 𝑡

𝑠
𝜆((Φ𝜏𝑠 ◦ Ψ𝑠

𝑟 ) (x), 𝜏)𝑑𝜏
is projected from the mapped velocity to enforce incompressibility.

5 PATH INTEGRAL ON LAGRANGIAN FLOWMAPS
Equation 4 can be written into a path integral form on a Lagrangian

trajectory. For a fluid particle 𝑞 with position x𝑞 (𝑡) at any time 𝑡 ,

the projection term in Equation 4 is the path integral of 𝜆 along its

trajectory from time 𝑠 to 𝑟 , which is denoted as

Λ𝑟𝑠,𝑞
Δ
=

∫ 𝑟

𝑠

𝜆((Φ𝜏𝑠 ◦ Ψ𝑠
𝑟 ) (x𝑞 (𝑟 )), 𝜏)𝑑𝜏 . (5)

Here the subscript 𝑞 indicates that this quantity is carried by the

particle 𝑞. For the mapping part, u𝑠 (Ψ𝑠
𝑟 (xq (r)), 𝑠) is the velocity of

particle 𝑞 at time 𝑠 , and we simplify the notation as u𝑠,𝑞 . Because

3
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T 𝑠
𝑟 =

𝜕x𝑠
𝜕x𝑟 is determined by the positions of all particles in the flow

field at time 𝑟 and 𝑠 , it can be carried on fluid particles, denoted as

T 𝑠
𝑟,𝑞 . We obtain the reformulated Equation 4 as a path integral:

u𝑟,𝑞 = T 𝑠
𝑟,𝑞

𝑇 u𝑠,𝑞︸    ︷︷    ︸
mapping

− ∇Λ𝑟𝑠,𝑞︸︷︷︸
projection

. (6)

Equation 6 forms the mathematical foundation of our Lagrangian

covector fluid model. This equation, in contrast to Equation 4, con-

siders the mapping and projection processes occurring on a particle

as it moves along its trajectory in the flow field, which simplifies the

formulation by eliminating the need for back-and-forth mappings

to identify a Lagrangian point. Thus, we reinterpret the mapping-

projection process on a moving particle 𝑞 as follows: (1) calculate the

mapped velocity from the initial time 𝑠 as 𝒖𝑀𝑠→𝑟,𝑞 = T 𝑠
𝑟,𝑞

𝑇 u𝑠,𝑞 , and
(2) remove its irrotational component by subtracting the gradient

of the path integral of the Lagrangian pressure ∇Λ𝑟𝑠,𝑞 .

6 INCOMPRESSIBILITY

6.1 Long-Range Mapping, Long-Range Projection
To determine the velocity of a particle 𝑞 at time 𝑟 , we initially con-

sider a straightforward method for solving Equation 6. We present

the method as a standard mapping-projection scheme:

(1) (Long-Range Mapping) Calculate the long-range mapped

velocity as: u𝑀𝑠→𝑟,𝑞 = T 𝑠
𝑟,𝑞

𝑇 u𝑠,𝑞 ;
(2) (Long-Range Projection) Solving the following Poisson

equation to obtain Λ𝑟𝑠,𝑞 :
∇ · ∇Λ𝑟𝑠 = ∇ · u𝑀𝑠→𝑟 , x ∈ Ω
u𝑟 = u𝑏 , x ∈ 𝜕𝑠Ω
𝑝 = 0, x ∈ 𝜕𝑓 Ω

(7)

where u𝑏 denotes the velocity of the solid boundary, and

𝜕𝑠Ω and 𝜕𝑓 Ω denote solid boundary and free surface bound-

ary respectively. Then, we carry out a projection as u𝑟,𝑞 =

u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑟𝑠,𝑞 to ensure u𝑟 satisfies ∇ · u𝑟 = 0.

Here, u𝑀𝑠→𝑟,𝑞 is long-range mapped from the initial time 𝑠 and is

projected to u𝑟 by a gradient of long-range path integral of pressure

Λ𝑟𝑠,𝑞 from time 𝑠 to 𝑡 . Hence, the Poisson equation we solve in Equa-

tion 7 leads to a long-range projection of the rotational component

accumulated from time 𝑠 to time 𝑟 . Given these, we refer to this

strategy as Long-RangeMapping Long-Range Projection (LMLP).
LMLP has two main issues regarding boundary and performance:

(1) Setting boundary conditions is challenging. Specifically, at

the free boundary 𝜕𝑓 Ω, to enforce the boundary condition

𝑝 = 0, we define Λ𝑟𝑠,𝑞 =
∫ 𝑟

𝑠
𝑝𝜏,𝑞 − 1

2
|u𝜏,𝑞 |2𝑑𝜏 . This implies

the necessity of establishing a non-zero Dirichlet boundary

condition such that Λ𝑟𝑠,𝑞 =
∫ 𝑟

𝑠
− 1

2
|u𝜏,𝑞 |2𝑑𝜏 . This condition re-

quires a comprehensive path integral of the kinematic energy

across a particle’s trajectory. Although seemingly feasible

from a Lagrangian perspective, it is crucial to recognize that

this path integral only constitutes a valid Dirichlet boundary

under the specific condition that the particle remains on the
free surface from time 𝑠 to 𝑡 . However, in practical scenarios,

this condition is rarely met due to the dynamic topological

changes of the surface over time. In the interval from time

𝑠 to 𝑟 , particles may transition between the interior and the

surface, rendering the calculation of this integral impractical.

(2) The performance issue is notable. The term u𝑀𝑠→𝑟,𝑞 encom-

passes a substantial divergent component ∇Λ𝑟𝑠,𝑞 , which in-

cludes an integral extending from time 𝑠 to 𝑡 . Attempting

to eliminate this component through a single projection re-

sults in significant computational expenses, primarily due to

the increased number of iterations required for solving the

Poisson equation.

6.2 Short-Range Mapping, Short-Range Projection
To address the two issues mentioned above, we devise a short-

range approach. By setting the flow map’s start point to be only one
timestep before 𝑟 , denoted as 𝑠′, we can calculate the velocity at time

𝑟 with the following two steps:

(1) (Short-Range Mapping) Calculate the mapped velocity:

u𝑀
𝑠′→𝑟,𝑞

= T 𝑠′
𝑟,𝑞

𝑇
u𝑠′,𝑞

(2) (Short-Range Projection) Solve the following Poisson equa-

tion to obtain
ˆ𝜆𝑞 :

∇ · ∇ ˆ𝜆 = ∇ · u𝑀
𝑠′→𝑟

, x ∈ Ω
u𝑟 = u𝑏 , x ∈ 𝜕𝑠Ω
𝑝 = 0⇒ ˆ𝜆 = − 1

2
|u2𝑟 |Δ𝑡, x ∈ 𝜕𝑓 Ω

(8)

where
ˆ𝜆𝑞 = 𝜆𝑟,𝑞Δ𝑡 is the numerical calculation of one step

integration Λ𝑟
𝑠′,𝑞 . Then, we conduct the divergence-free pro-

jection as u𝑟,𝑞 = u𝑀
𝑠′→𝑟,𝑞

− ∇ ˆ𝜆𝑞 .
Given both mapping and projection are limited within a short inter-

val from time 𝑠′ to 𝑟 , we refer the scheme as Short-Range Mapping

Short-Range Projection (SMSP). It is worth noting that SMSP is

akin to the Semi-Lagrangian advection schme, as they both involve

computing a one-step mapping. The difference lies in the fact that

SMSP employs a mapping form based on the Lie advection equation

u𝑀
𝑠′→𝑟,𝑞

= T 𝑠′
𝑟,𝑞

𝑇
u𝑠′,𝑞 , whereas Semi-Lagrangian employs a mapping

form based on the ordinary advection equation u𝐴
𝑠′→𝑟,𝑞

= u𝑠′,𝑞 .
SMSP ensures robustness by addressing the two issues above:

(1) The Neumann boundary can be set as Λ𝑟
𝑠′,𝑞 =

∫ 𝑟

𝑠′ −
1

2
|u𝜏,𝑞 |2𝑑𝜏 ,

namely,
ˆ𝜆𝑞 = − 1

2
|u𝑠′,𝑞 |2Δ𝑡 , which is robustly calculable (because of

only one timestep). (2) The Poisson solve converges fast thanks to

the small divergence on its right-hand side. However, SMSP forgoes

the advantages associated with employing a long-range flow map

for vorticity conservation. Instead, it resolves to a reformulated

Euler equation in covector form, accompanied by a one-step particle

advection process. This approach results in the loss of the benefits

inherent in utilizing a flow map to preserve vorticies.

6.3 Long-Range Mapping, Short-Range Projection
A natural next step is to combine the merits of LMLP and SMSP.

However, this is not mathematically intuitive. As shown in Equa-

tion 6, the mapping and projection steps require the same time

interval for their path integrals.

4
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To address this issue, we observe the following identity:

u𝑀𝑠′→𝑟,𝑞︸  ︷︷  ︸
SM

= u𝑀𝑠→𝑟,𝑞︸ ︷︷ ︸
LM

−∇Λ𝑠
′
𝑠,𝑞 . (9)

This identity can be simply proved as u𝑟,𝑞 = u𝑀𝑠→𝑡,𝑞 − ∇Λ𝑟𝑠,𝑞 =

u𝑀
𝑠′→𝑡,𝑞

−∇Λ𝑟
𝑠′,𝑞 and Λ𝑟𝑠,𝑞 = Λ𝑠

′
𝑠,𝑞 +Λ𝑟𝑠′,𝑞 . It establishes a connection

between the long-range and short-range mappings, allowing us to

express a short-range mapping by adding the gradient of pressure

integral ∇Λ𝑠′𝑠,𝑞 to its long-range counterpart. This calculation is nu-

merically robust, because for each particle, Λ𝑠
′
𝑠,𝑞 is the path integral

of the Lagrangian pressure on its trajectory. Substituting Equation 9

into Equation 8, we obtain the following scheme:

(1) (Long-Range Mapping) Calculate mapped velocity by the

long-range flow map: u𝑀𝑠→𝑟,𝑞 = T 𝑠
𝑟,𝑞

𝑇 u𝑠,𝑞 ;
(2) Calculate mapped velocity by short-range flow map based on

the long-range mapped velocity as: u𝑀
𝑠′→𝑟,𝑞

= u𝑀𝑠→𝑟,𝑞 −∇Λ𝑠
′
𝑠,𝑞

(3) (Short-Range Projection) Solve the following Poisson equa-

tion to obtain
ˆ𝜆𝑞 :

∇ · ∇ ˆ𝜆 = ∇ · u𝑀
𝑠′→𝑟

, x ∈ Ω
u𝑟 = u𝑏 , x ∈ 𝜕𝑠Ω
𝑝 = 0⇒ ˆ𝜆 = − 1

2
|u2𝑟 |Δ𝑡, x ∈ 𝜕𝑓 Ω

(10)

where
ˆ𝜆𝑞 = 𝜆𝑟,𝑞Δ𝑡 is the numerical calculation of one step

integration Λ𝑟
𝑠′,𝑞 .

(4) Update the integral: Λ𝑟𝑠,𝑞 = Λ𝑠
′
𝑠,𝑞 + ˆ𝜆𝑞 and project u𝑟,𝑞 =

u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑟𝑠,𝑞 to ensure u𝑟 satisfies ∇ · u𝑟 = 0.

We name it asLong-RangeMapping Short-RangeProjection(LMSP).
In LMSP, the Λ𝑠

′
𝑠 in Step (2) is calculated in the previous time step,

and this value is updated in Step (4) by Λ𝑟𝑠,𝑞 = Λ𝑠
′
𝑠,𝑞 + ˆ𝜆𝑞 to the value

in the current time step. This accumulation might lead to a concern

that accumulating pressure Λ𝑟𝑠 could potentially lead to the accu-

mulation of numerical errors, thereby diminishing the long-range

map’s ability to preserve vorticity when calculating u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑠
′
𝑠

in Step (2). We show this is not an issue. Because ∇Λ𝑠′𝑠 is a gradient

field, it only affects the divergence component of u𝑀𝑠→𝑟,𝑞 . Any nu-

merical error accumulated in Λ𝑠
′
𝑠 goes directly into the rotational

part u𝑀𝑠→𝑟,𝑞 , which will be removed after projection.

We further demonstrate this with the following proposition:

Proposition 6.1. Poission Equation 10 with initial guess ˆ𝜆 = 0 is
equivalent to Poission Equation 7 with initial guess Λ𝑟𝑠 = Λ𝑠

′
𝑠

Proof: Substitute Equation 9 into Equation 10, we obtain ∇ · ∇ ˆ𝜆 =

∇ · [∇u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑠
′
𝑠,𝑞], which is equivalent to ∇ · ∇( ˆ𝜆 + Λ𝑠′𝑠,𝑞) =

∇ · ∇u𝑀𝑠→𝑟,𝑞 . Use Λ
𝑟
𝑠 to substitute

ˆ𝜆 + Λ𝑠′𝑠,𝑞 , and we get Equation 7.

Also, for the initial guess, when
ˆ𝜆 = 0, Λ = Λ𝑠

′
𝑠,𝑞 .

7 ADAPTING TO CLASSICAL ADVECTION-PROJECTION
In the final movement, we further adapt the LMSP scheme to a

classical advection-projection scheme by solving the Poisson equa-

tion with standard Neumann and Dirichlet boundary conditions,

namely 𝑝 = 0 on 𝜕𝑓 Ω and 𝒖 = 𝒖𝑏 on 𝜕𝑠Ω. This modification is

motivated by the desire to circumvent any inaccuracies arising from

the approximation of T 𝑟
𝑠 for a particle on the surface (due to the

lack of sufficient neighboring particles to approximate the Jacobian),

which could potentially lead to numerical instabilities during the

simulation. We showed an ablation test for this issue in Fig. 11.

We observe the following identity regarding a particle’s velocity

on a one-step flow map:

u𝐴𝑠′→𝑟,𝑞 = u𝑀𝑠′→𝑟,𝑞 + Δ𝑡∇(
1

2

|u𝑠′,𝑞 |2) (11)

where u𝐴
𝑠′→𝑟,𝑞

represents the passively advected velocity on the

particle’s trajectory, namely, to move the particle to a new position

and keep its velocity as it is, as seen in all traditional particle-based

advection schemes. We show a brief proof in the Appendix A.

Combining Equation 9 and Equation 11, we obtain our final

advection-projection scheme as:

(1) (Long-Range Mapping) For the interior particles, calculate
the long-flow-map mapped velocity: u𝑀𝑠→𝑟,𝑞 = T 𝑠

𝑟,𝑞
𝑇 u𝑠,𝑞 .

(2) For an interior particle, calculate its velocity as the advected

velocity expressedwith long-flow-mapmapped velocity (Eq. 11):

u𝐴
𝑠′→𝑟,𝑞

= u𝑀𝑠→𝑟 − ∇Λ𝑠
′
𝑠 + ∇( 12 |u𝑠′,𝑞 |

2)Δ𝑡 .
(3) For a boundary particle (refer to Figure 4), calculate its veloc-

ity as the advected velocity: u𝐴
𝑠′→𝑟,𝑞

= u𝑠′,𝑞 .
(4) (Classical Projection) Solve the classical Poisson equation

to obtain 𝑝𝑞 :
∇ · ∇𝑝 = ∇ · u𝐴

𝑠′→𝑟
, x ∈ Ω

u𝑟 = u𝑏 , x ∈ 𝜕𝑠Ω
𝑝 = 0. x ∈ 𝜕𝑓 Ω

(12)

(5) Update the integral: Λ𝑟𝑠,𝑞 = Λ𝑠
′
𝑠,𝑞 + Δ𝑡 (𝑝𝑞 − 1

2
|u𝑠′,𝑞 |2) and

do projection u𝑟,𝑞 = u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑟𝑠,𝑞 for interior part, and

u𝑟,𝑞 = u𝐴
𝑠′→𝑟,𝑞

− ∇𝑝𝑞Δ𝑡 for the part near free surface.

We name it asLong-RangeMappingClassical Projection (LMCP).
In this scheme, the calculation of the Poisson equation is performed

for 𝑢𝐴
𝑠′→𝑡

throughout the entire domain, ensuring the mathematical

consistency of the final velocity by the covector flow map 𝑢𝑀𝑠→𝑟,𝑞

and the advected velocity 𝑢𝐴𝑠→𝑟,𝑞 after projection. At the same time,

for interior particles, the advected velocity 𝑢𝐴
𝑠′→𝑡

is calculated by

u𝐴
𝑠′→𝑟,𝑞

= u𝑀𝑠→𝑟,𝑞 − ∇Λ𝑠
′
𝑠,𝑞 + ∇( 12 |u𝑠′,𝑞 |

2)Δ𝑡 with long-range map-

ping for vorticity preserving. Again, because only the gradient

−∇Λ𝑠′𝑠 + ∇( 12 |u𝑠′ |
2)Δ𝑡 is added to u𝑀𝑠→𝑟 , similar to subsection 6.3,

the process of adding −∇Λ𝑠′𝑠 +∇( 12 |u𝑠′ |
2)Δ𝑡 to u𝑀𝑠→𝑟 to obtain u𝐴𝑠′→𝑟

keeps the long-range flow map’s ability to preserve vorticity.

Summary.We establish a long-range, Lagrangian flowmap based

on Equation 6 and incorporate it in a classical projection step with

zero Neumann boundary by leveraging Equation 9 and 11.

8 TIME INTEGRATION
We adopt the LMCP scheme in our simulation and summarize the

time integration scheme of our approach in Algorithm 1.We provide

further implementation details in the Appendix B.
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Algorithm 1 Lagrangian Covector Fluid

Input: Initial velocity u𝑠 ; Initial particle positions x𝑠 ;
Re-initialization decision strategy R; Near-surface judgmentJ
1: set time 𝑠 ← 0, 𝑠′ ← 0; integration Λ𝑠

𝑠,𝑖
← 0

2: for each time step and at time 𝑟 do
3: if re-initialization decision strategy R satisfy then
4: set 𝑠 ← 𝑟, 𝑠′ ← 𝑟

5: set u𝑠,𝑖 ← u𝑖 ; x𝑠,𝑖 ← x𝑖 ; Λ𝑠𝑠,𝑖 ← 0

6: for all particle 𝑖 do
7: advect particle position: x𝑖 ← x𝑖 + v𝑖Δ𝑡
8: for all particle 𝑖 do
9: if J (𝑖) is True then
10: compute u𝐴

𝑠′→𝑟,𝑖
← 𝑢𝑠′,𝑖

11: else
12: compute T 𝑠

𝑟,𝑖
← 𝜕x𝑠

𝜕x𝑟 |x𝑟=x𝑖
13: compute u𝑀

𝑠→𝑟,𝑖
← T 𝑠

𝑟,𝑖
u𝑠,𝑖

14: compute u𝐴
𝑠′→𝑟,𝑖

← u𝑀
𝑠→𝑟,𝑖

− ∇Λ𝑠′
𝑠,𝑖
+ ∇( 1

2
|u𝑠′,𝑖 |2)Δ𝑡

15: solve possion Equation 12 and get 𝑝𝑟,𝑖

16: update Λ𝑟
𝑠,𝑖
← Λ𝑠

′
𝑠,𝑖
+ (𝑝𝑟,𝑖 − 1

2
|u𝑟,𝑖 |2)Δ𝑡

17: for all particle 𝑖 do
18: do velocity projection: u𝑟,𝑖 = u𝐴

𝑠′→𝑟,𝑖
− ∇𝑝𝑟,𝑖

19: set last time: 𝑠′ ← 𝑟

9 NUMERICAL IMPLEMENTATION
Voronoi-based Discretization. We implemented a Voronoi-based

particle method for numerical implementation. In each time step, we

generate Voronoi diagrams for all moving particles, with each parti-

cle corresponding to a Voronoi cell. We represent the 𝑖-th particle as

𝑞𝑖 , with position x𝑖 . As shown in Fig. 3, the cell corresponding to 𝑞𝑖
is denotedV𝑖 , with a volume 𝑉𝑖 and centroid b𝑖 . The adjacent facet
between two neighboring cellsV𝑖 andV𝑗 is denoted as A𝑖 𝑗 . The

facet A𝑖 𝑗 has the area 𝐴𝑖 𝑗 and the centroid b𝑖 𝑗 . The distances from
x𝑖 and x𝑗 to the facet A𝑖 𝑗 are respectively denoted as 𝑑𝑖 𝑗 and 𝑑 𝑗𝑖 ,

while the distance between x𝑖 and x𝑗 is denoted as 𝑙𝑖 𝑗 . According to
the properties of Voronoi diagrams, A𝑖 𝑗 bisects the line connecting

x𝑖 and x𝑗 perpendicularly, so 𝑑𝑖 𝑗 = 𝑑 𝑗𝑖 and 𝑑𝑖 𝑗 + 𝑑 𝑗𝑖 = 𝑙𝑖 𝑗 holds.

Fig. 3. Voronoi discretization

For each particle 𝑞𝑖 , its associ-

ated Voronoi cellV𝑖 is used to de-
fine a matrix-form discrete gra-

dient operator𝐺 and divergence

operator 𝐷 to calculate the gra-

dient 𝐺𝑝 of a scalar quantity 𝑞

and the divergence 𝐷v of a vec-

tor quantity v carried by parti-

cles. The computation of these

operators relies on the calcula-

tion of the rate of change of the

volume ∇x𝑖𝑉𝑗 induced by particle positions. We use the formula

∇x𝑗𝑉𝑖 =
𝐴𝑖 𝑗

𝑙𝑖 𝑗
(x𝑗 − b𝑖 𝑗 ) and ∇x𝑖𝑉𝑖 = −

∑
𝑗∈N𝑖

∇x𝑖𝑉𝑗 for calculating
∇x𝑖𝑉𝑗 as given in [De Goes et al. 2015].

According to [De Goes et al. 2015; Duque 2023], the matrix-form

divergence operator and gradient operator can be defined directly

from ∇x𝑖𝑉𝑗 as 𝐷𝑖 𝑗 = (∇x𝑗𝑉𝑖 )𝑇 , 𝐷𝑖𝑖 = (∇x𝑖𝑉𝑖 )𝑇 and 𝐺 = −𝐷𝑇
. The

divergence of v and the gradient of 𝑝 can be computed using the

matrix-form divergence and gradient operators defined as follows:

[𝐷v]𝑖 =
∑︁
𝑗∈𝑁𝑖

𝐴𝑖 𝑗

𝑙𝑖 𝑗
[(b𝑖 𝑗 − x𝑖 ) · v𝑖 + (x𝑗 − b𝑖 𝑗 ) · v𝑗 ],

[𝐺𝑝]𝑖 =
∑︁
𝑗∈𝑁𝑖

𝐴𝑖 𝑗

𝑙𝑖 𝑗
(x𝑖 − b𝑖 𝑗 ) (𝑝𝑖 − 𝑝 𝑗 ),

(13)

where 𝑁𝑖 represents the set composed of the cells adjacent to cell 𝑖 .

When solving the Poisson equation for velocity projection, the

Laplacian operator 𝐿 is defined as 𝐿 = 𝐷𝑉 −1𝐺 , where𝑉 is a diagonal

matrix composed of all cell volumes 𝑉𝑖 . Because the differential

operator matrices satisfy 𝐺 = −𝐷𝑇
, the operator −𝐿 is symmetric

and positive semi-definite, allowing the discretized Poisson equation

−𝐿𝑝 = −𝐷u∗ to be solved using the Conjugate Gradient method,

where u∗ represents the velocity before the divergence projection.

Fig. 4. Particles represent ei-
ther interior (blue) or bound-
ary (gray-blue) fluid, bound-
aries (black), or air (orange).

Boundary. Similar to [De Goes

et al. 2015], we represent the

solid boundary using solid par-

ticles and sample air particles

near the free surface, utilizing

the ghost particle method from

[Schechter and Bridson 2012]

(see Fig. 4). Solid particles and

air particles are used for clipping

the Voronoi diagrams calculated

for fluid particles and setting boundary conditions, as proposed in

[De Goes et al. 2015].

Others. For gravity, we accumulate the integration of gravity

𝐺𝑟
𝑠 =

∫ 𝑟

𝑠
𝑔𝑑𝜏 along the particle trajectory and add it to the mapped

velocity before projection:u𝑀𝑠→𝑟 ← u𝑀𝑠→𝑟 +𝐺𝑟
𝑠 for interior part and

add gravity directly to advected velocity u𝐴
𝑠′→𝑟

← u𝐴
𝑠′→𝑟

+𝑔Δ𝑡 near
the free surface. To make particle distribution more uniform, like in

[De Goes et al. 2015], at the end of each time step, we put particles

to the centroid of their corresponding Voronoi cell x𝑖 ← b𝑖 .

10 RESULTS AND DISCUSSION
Validation. We demonstrate the effectiveness of our method by

performing four benchmark experiments against the power particle

method (PPM) [De Goes et al. 2015]
1
, which shares implementation-

wise similarities given its geometric data structure. We observe

slower energy dissipation rates, less vorticity noise, and better

preservation of vortical structures. We color each 2D particle blue

(lower/negative values) through gray to red (higher/positive values),

based on a linear curve corresponding to its vorticity magnitude.

(1) Leapfrog. We initialize two negative and two positive vortex

rings, letting the four vortices move forward by the velocity field

generated by their influence on each other. The rate of energy dissi-

pation directly relates to the number of cycles they move forward

1
For simplicity, we implement a Voronoi diagram instead of the power diagram without

affecting the ability to preserve vortex for both our methods and PPM.
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before merging. As illustrated in Fig. 6, our method shows a better

preservation of the vortical structures than PPM; vortices simulated

with our method stay separated at the point where the vortices

in the PPM simulation already merged. (2) Taylor Vortices. We

benchmark our method by simulating two Taylor vortices placed

0.815 apart from each other (Fig. 16). Their velocity field is given by

𝜔 (x) = 𝑈 /𝑎(2−𝑟2/𝑎2)𝑒𝑥𝑝 ((1−𝑟2/𝑎2)/2), where we use𝑈 = 1 and

𝑎 = 0.3, and 𝑟 denotes the distance from x to the vortex center.Using
our method, we observe the vortices staying separate, whereas us-

ing PPM, they merge at the center. (3) Taylor-Green Vortices.
Fig. 10 shows a simulation started with a symmetric divergence-free

velocity field. The fluid is expected to maintain symmetry along the

two axes in 2D while rotating. We observe our method producing

less noise in terms of vorticity magnitude carried by the particles

as compared to PPM (Fig. 10a-b), with our method presenting a far

better energy dissipation curve (Fig. 10c). (4) 3D Dam Break. In
Fig. 8, we validate our method with the classical 3D benchmark case

for verification of solid boundary and free surface flow handling.

Ablation Study. We illustrate (1) the robustness of our LMCP

scheme in handling free surface boundary and (2) the subtraction

of accumulated pressure gradient significantly accelerating the con-

vergence rate. Fig. 11 illustrates a robust interface achieved using

our scheme, in contrast to instabilities that occur without it. Fig. 7

shows that the subtraction of the accumulated pressure gradient

can accelerate the convergence of the Poisson equation solver.

Examples. We show additional 2D and 3D examples to demon-

strate the robustness and correctness of our method. We use Taichi

[Hu et al. 2019] for our implementation, and experiments are run on

Tesla V100 GPUs. We use at most 200 000 particles in all experiments

to represent fluid, air, and solids. Voronoi diagrams are created using

Scipy [Virtanen et al. 2020] and Qhull [Barber et al. 1996]. Kármán
Vortex Street. Fig. 15 shows alternating vortices forming down-

stream from a blunt object caused by the unsteady separation of

the fluid. 2D Moving and Rotating Board Fig. 5 shows an object

exhibiting flapping motion by traversing the rectangular domain

from left to right, and back while generating vortices in its wake.

3D Single & Double Sink In these examples, we illustrate our

method’s ability for accurate vorticity perservation combining with

free-surface treatment. For single vortex example, we place an initial

vorticity field at the center of the tank. A hole is opened as the sink

for the tank and water drains out through the hole. Similar settings

are adopted for two sink but the sinks have opposite direction of ro-

tation in order to create interesting surface motion. We can observe

spiral patterns on the surface in both examples. Results are shown

in Fig. 12, Fig. 17 and Fig. 13 3D Rotating Board As illustrated in

Fig. 9, a board is placed at the center of the scene and set to rotate

at a constant speed. We show our method can handle drastic free-

surface change and we deal moving solid boundaries in a robust and

effective way. Splashes and detailed water surfaces can be observed.

3DWave Generator. In this example, we demonstrate the scenario

of waves crashing against several pillars. We observe the dynamic

water flow behind the pillars and the interaction between the waves.

We show particle view for this example in Fig. 14.

CFL. In all of our examples, we set the CFL number to 1 due to

constraints imposed by the Voronoi particles. Larger CFL numbers

could lead to drastic changes in the neighbors of particles, potentially

causing stability issues. Grid-based methods [Nabizadeh et al. 2022]

do not encounter these issues.

Table 2. Performance timing. We measure the time each substep takes, and
also how much of this was taken up by constructing the Voronoi diagram.
Although our simulation method runs on the GPU, the Voronoi diagram
calculation takes place on the CPU.

Average Time Cost per Substep
Scene name Particles Total (Voronoi)
2D Leapfrog 480k 12.5s (8.8s)

2D Taylor Vortices 360k 9.8s (6.4s)

2D Taylor-Green Vortices 156k 5.96s (2.7s)

3D Dam Break 211k 20.9s (18.12s)

2D Kármán Vortex Street 381k 9.56s (6.74s)

2D Moving and Rotating Board 150k 5.92s (2.66s)

3D Sink 180k 29s (25.7s)

3D Rotating Board 150k 5.9s (2.6s)

3D Wave Generator 403k 35s (32.84s)

11 LIMITATIONS AND FUTURE WORK
In summary, this paper presents a novel Lagrangian approach to es-

tablishing covector flow maps under complex boundary conditions.

The developed decoupling mechanism, rooted in flow-map theory,

effectively combines long-range flow maps with short-range (and

classical) projections, ensuring robust handling of free boundaries.

A significant limitation of our approach lies in its exclusive treat-

ment of inviscid flows. Addressing viscous flows, as well as other

interfacial phenomena, represents a promising direction for future

research. Currently, the speed of our fluid simulation code is con-

strained by the single-threaded Qhull algorithm used for generating

Voronoi cells in each frame. We plan to investigate more efficient

schemes for solving incompressibility on particles. In our future

work, we aim to delve further into flow-map theories within a

weakly compressible framework, enhancing meshfree Lagrangian

methods such as SPH. Additionally, we are interested in applying

our decoupled mapping-projection scheme to other free-surface

problems, including levelset-based and particle-grid methods.
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A PROOF OF EQ. 11
Proof: Consider one step advection from time 𝑠′ to 𝑟 and we

have x𝑟,𝑞 = x𝑠′,𝑞 + Δ𝑡u𝑠′,𝑞 . Thus the Jacobian T 𝑠′
𝑟 =

𝜕x𝑠′,𝑞
𝜕x𝑟,𝑞 can be

calculated as T 𝑠′
𝑟 =

𝜕x𝑠′,𝑞
𝜕x𝑟,𝑞 =

𝜕 (x𝑟,𝑞−Δ𝑡u𝑠′,𝑞 )
𝜕x𝑟,𝑞 = 𝐼 − Δ𝑡∇u𝑠′,𝑞 , where

𝐼 denotes identity matrix. Thus u𝑀
𝑠′→𝑟,𝑞

= T 𝑠′
𝑠′,𝑞

𝑇
u𝑠′,𝑞 = u𝑠′,𝑞 −

7
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Δ𝑡∇u𝑇
𝑠′,𝑞 · u𝑠′,𝑞 . In the particle method, u𝐴

𝑠′→𝑟,𝑞
= u𝑠′,𝑞 . Due to

∇u𝑇 · u = ∇( 1
2
|u|2), we have u𝐴

𝑠′→𝑟,𝑞
= u𝑀

𝑠′→𝑟,𝑞
+∇( 1

2
|us′,q |2)Δ𝑡 .□

B IMPLEMENTATION DETAILS OF ALGO. 1
Reinitialization.We employ a simple reinitialization decision strat-

egy R triggered every 𝑛 substeps (𝑛 = 20 in our implementation).

Boundary particle checking.We employ the following strategy

to obtain the boundary particle set J : At the initial time 𝑠 , set

the flag 𝒿𝑖 to False; at each step, check if the particle is in the 𝑘

layers of particles near the free surface at current time 𝑟 . If it is, we

update the flag 𝒿𝑖 to True; 𝐽 (𝑖) returns the value of 𝒿𝑖 .(𝑘 = 3 in our

implementation).
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Fig. 5. A moving and rotating board in 2D traverses the domain from left to right, and then back.

Fig. 6. Leapfrog vortices in 2D. PPM (top), our approach (bottom).

Fig. 7. The performance when using different flow map lengths is shown in
the case of both the original Covector Fluid technique, and our method, where
previous pressure integration is subtracted before projection. Blue, green, and
red lines depict divergence error-interative step curve for conjugate gradient
solver for poisson equation of flow map length 1, 8, and 17, respectively. We
observe an improved rate of convergence by our method. This plot corresponds
to Leapfrog example and convergence error is calculated by averaging |∇ · u |
on particles.

Fig. 8. Dam break (particle visualization). Fig. 9. Rotating board.

(a) PPM (b) Our method

Fig. 10. Qualitative and quantitative evaluation of simulating Taylor-Green
vortices. (a) and (b) show the state for each method after 700 time steps. (c)
shows the volume-averaged kinematic energy (y-axis) over time steps (x-axis):
the energy dissipation for PPM (orange) and our method (blue) over 500 time
steps. Here, coloring represents the magnitude and sign of vorticity.

(a) Without (b) Our method

Fig. 11. Ablation study on the effect of our novel free surface
treatment. We observe the same ball of fluid particles being
dropped into a still body of water.When not using our method
(on the left), due to inaccuracies in the T𝑟𝑠 approximation,
strange shapes appear at the free surface. When using our
method (on the right), the shape of the free surface is correct.
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Fig. 12. Single sink. Surface rendering (top) and particle visualization (bottom).

Fig. 13. Double sink (particle visualization).

Fig. 14. Waves generated in a water tank with cylindrical obstacles.

Fig. 15. Kármán vortex street. Fig. 16. Taylor vortices. Initial
state (top) and at 300 steps (bot-
tom). PPM (left), Ours (right).

Fig. 17. Double sink (surface rendering).
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